
Day 2, Part 1:
R Basics

Brennan Terhune-Cotter and Matt Dye

https://github.com/brennangitsit/2023_IAM3_R

https://github.com/brennangitsit/2023_IAM3_R

Review
Using R for reproducible analyses :)

How to use RStudio and its features

How to import data

Agenda
1. The R Environment

2. Objects

3. Operators

4. How to Write Good Code

The R Environment

The R Environment
R is a free software environment for statistical computing & plotting

R is open-source; anyone can contribute to R.

Thousands of free packages have been developed by different contributors.

Like most other open-source languages, you can work with R via many user
interfaces.

However, it’s best to use an IDE (integrated development environment).

RStudio is the most common IDE for R. It gives us tools to more effectively
use R.

Base R & CRAN
Base R is the basic software containing the R programming language.

Frequently updated; most recent is Already Tomorrow (04-21-2023)

The has:

Mirrors for downloading R code and documentation

A repository of packages (now has ~19,000 packages!)

Comprehensive R Archive Network (CRAN)

https://cran.r-project.org/

Packages
Themed collection of functions and datasets with a cohesive purpose

Extend basic R functionality; essential to using R

Installing and Using Packages
Install packages once per machine; use
the following commands in your
console (or click prompts to “install”
when they pop up in RStudio)

(package names are in quotes)

Load packages in every session; use the
following commands in your scripts

(package names are NOT in quotes)

install.packages("tidyverse")1

library(tidyverse)1

Installing and Using Packages
When a package is loaded, you can use any function in that package just by
calling the function name

However, you can also call any function from an installed package without
loading it by adding the package name:

This is useful if:

You just want to use one function from a package

The function is masked by another function from another package with the
same name

library(readxl)1
read_xlsx(...)2

readxl::read_xlsx(...)1

R Files

R Projects
An R project (.Rproj) is a file which saves your workspace

It is useful to have an .Rproj file for each project you have

When you open the .Rproj, everything will look like the last time you saved it.

Instead of opening RStudio or individual R files (like any other application):

1. Open your .Rproj

2. Open files from that .Rproj ¶

R Scripts
Scripts have code which can be
executed

R scripts end with an ‘.R’ extension

Everything in an R script will be
executed unless it is commented out
with #

R Markdown
RStudio also provides R
Markdown/Notebook documents
(“.Rmd”)

Rmd files are text files that contain
executable code chunks

More readable & great for sharing
your data analysis because…

R Markdown
.Rmd files are rendered into readable
.html files

Those files show your commentary,
code, and output (including plots!)

Two types of .Rmd files:

R Markdown files execute all code
chunks upon “knitting” (rendering)

R Notebook files only include
output of code you’ve already
executed

Newer format & more
interactive

Act as a lab “notebook”

R Objects

Objects
Basic building blocks of your code and data!

Created using assignment operators <- or =
Can be manipulated using their names

object <- 21
object2

[1] 2

anotherobject <- c(4,5,6)1
anotherobject2

[1] 4 5 6

object + anotherobject1

[1] 6 7 8

Objects
1. Open 13_basics.Rmd

2. Read Assigning Variables

Data Types
Each object has a type. R has several data types. We only need to know 4:

Numeric (or double)

Integer is another type which is just numeric without decimal points

Character (or string)

Characters or sets of characters (including numbers)

Strings must be surrounded by single (' ') or double (" ") quotes

Boolean (or logical)

Boolean variables can only take two values: TRUE/T or FALSE/F

numeric <- 21
character <- 'a'2
another_character <- '2'3
string <- "this is stringy"4
boolean <- TRUE5
another_logical <- F6

Data Types
Read Data Types

Factors
The 4th data type to know is factors

Factors are used to represent categorical data

Data that can take on a limited number of distinct values (these values are
referred to as levels).

If you have a factor representing colors, its levels might be “red”, “blue”, and
“green”.

Factors can be unordered (the default), where no level is considered “greater”
than any other, or they can be ordered, where the levels have a specific
sequence.

A factor representing the t-shirt sizes “small”, “medium”, and “large” could
be an ordered factor.

Data Types: NA
R treats missing values with a special type called NA

This is NOT like typing “NA” as a string!

NA values require special functions

They can be really annoying to deal with but helps you
handle missing data appropriately!

no_NA has_NA

a d

NA NA

b NA

NA e

Vectors
Essentially one “column” of data (one-dimensional array)

In R, a single number is technically a vector of length 1

All values in a vector must be the same data type!

num_vector <- c(1,2,3)1
char_vector <- c("hi","what's","up")2
boolean_vector <- c(T,F,TRUE)3
length(num_vector)4

[1] 3

number <- 41
length(number)2

[1] 1

Matrices
A matrix is a two-dimensional array

All values in a matrix must be the same data type!

data <- c(1,2,3,4,5,6,7,8,9)1
matrix <- matrix (data,nrow=3,ncol=3)2
matrix3

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

matrix[2,3]1

[1] 8

Data Frames (dfs)

This is what we will be using 99% of the time when working with data in R!

A two-dimensional data structure (rows and columns)

Essentially a collection of named vectors (columns):

All data within a column must be the same type

BUT different columns within a df can have different data types!

And columns in a df have names

Tip

dataset <- data.frame(num_vector, char_vector, boolean_vector)1
dataset2

 num_vector char_vector boolean_vector
1 1 hi TRUE
2 2 what's FALSE
3 3 up TRUE

Data Frames
our data in Excel worksheets == dataframes (with hardwired variable names)

Functions
Functions are blocks of code which perform a specific task

Functions take arguments as input

You will be using ready-made functions to manipulate your data (from base R
or from packages)

Near the end of the workshop, you can learn to create your own functions

Important for simpler, more organized & readable code

functionname(argument1, argument2, ...)1

R Operators

Common Operators
Assignment operators: <- (option -)

Relational operators: ==, !=, >, <, >=, <=
Creating a series of numbers: :

Read Operators and NA

y <- 1:101
print(y) # bonus: what kind of object is y?2

 [1] 1 2 3 4 5 6 7 8 9 10

How to Write Good Code

Commenting
Commenting is your inline documentation of your code and analysis

Especially as a beginning coder, there is no such thing as too little commenting

Comments should:

1. explain what your code is doing

2. explain decisions you made and why

3. not repeat the code, but clarify & contextualize it

Naming Variables and Objects
How you name variables and objects can make life much easier for you.

Use long & descriptive variable or object names if you have to. Text is cheap,
brain capacity is not.

Which dataframe name is clearer?

Variables and objects should never have spaces; use underscores instead

Names with spaces must be surrounded by ` ` every time you call them,
which is super annoying

Variable names should be lowercase

df31
average_EEG_response_times2

Coding Style
Don’t use run-on code lines; most functions should start on a new line.

Use blank lines often to separate code blocks! You can’t have too many blank
lines.

Add spaces around operators: + - == < != <- etc.

Add spaces after comments like in English.

new_df <- mutate(df,1
 new_name = old_name,2
 new_name2 = old_name2,3
 new_name3 = old_name3)4
newer_df <- filter(new_df,5
 group = "deaf")6

Pseudocode! (your salvation!)
What do you do if you’re not sure how to write something in code?

You write pseudocode first, and gradually change it into code.

Pseudocode Code

For data frame 'people',1
Find rows where 'age' is greater than 20,2
From these rows, calculate the mean of 'age'3

With data frame 'people',1
Use filter() to select rows where 'age' > 20,2
Use summarise() with mean() to 3
calculate mean 'age' of these rows.4

library(dplyr)1
2

people %>%3
 filter(age > 20) %>%4
 summarise(mean_age = mean(age))5

Debugging
Overwriting objects (or not!)

When you assign the same name to an object, you overwrite that object.

Assigning different names allows you to look at the object in between your
steps so you can figure out where you went wrong.

Rerunning code

You should make a habit of rerunning your entire code with a clean dataset
pretty often.

This helps you catch mistakes early on.

Other tips for coding in R
Delete old objects you no longer need with rm(). This helps keep your
environment clean.

If you need to quote something, highlight it and press " or '. This also works
with (.

Use sectioning comments (# Section title -----) which allow you to
“minimize” sections.

