
Day 5, Part 1:
Report Data

Brennan Terhune-Cotter and Matt Dye

https://github.com/brennangitsit/2023_IAM3_R

https://github.com/brennangitsit/2023_IAM3_R

Agenda
1. Summarizing data

2. Conducting common statistical tests

3. Reporting results

4. Tips for writing good code

Summarizing data

Summarizing a Dataset
??summarise1

The functions summarise() (or summarize across the pond) are great for
summarizing data!

If you want to summarize across groups, you use group_by first to group the
data.

Let’s use a dataset called asl_signs, which has information about ASL signs
and their frequency, iconicity, movement, handshape, etc.

asl_signs
entry_id sign_frequency iconicity iconicity_type lexical_class handshape selected_fingers

tree 5.143 4.232 Perceptual Noun 5 imrp

night 6.032 1.919 Arbitrary Noun flat_b imrp

hamburger 4.429 3.714 Arbitrary Noun c imrp

nephew 2.621 1.108 Arbitrary Noun flat_n im

castle 1.579 3.540 Arbitrary Noun curved_v im

humble 3.200 1.846 Arbitrary Adjective 1 i

cup 5.742 2.897 Arbitrary Noun c imrp

english 4.645 1.026 Arbitrary Noun c imrp

dentist 2.677 3.923 Arbitrary Noun s imrp

sandwich 3.677 2.538 Arbitrary Noun flat_b imrp

monkey 2.619 6.014 Pantomimic Noun curved_5 imrp

chair 5.714 1.979 Arbitrary Noun h im

candy_1 4.419 1.897 Arbitrary Noun 1 i

wander 3.548 3.487 Arbitrary Verb 1 i

scientist 3.516 1.410 Arbitrary Noun a t

read 6.387 4.571 Perceptual Verb v im

cat 5.097 4.618 Both Noun f i

room 5.742 4.154 Perceptual Noun open_b imrp

island 3.161 1.718 Arbitrary Noun i p

paper 6.484 3.051 Arbitrary Noun 5 imrp

Summarizing asl_signs
Let’s summarize the iconicity variable,
which is a score on a Likert scale of 1-7
(already summarized across
respondents).

asl_signs %>% 1
 summarise(2
 n = n(),3
 mean_iconicity = mean(iconicity),4
 stdev_iconicity = sd(iconicity),5
 min_iconicity = min(iconicity),6
 max_iconicity = max(iconicity)7
) %>% 8
 kable()9

Everything except n is NA! This is
because we forgot to take care of NA
values in our data.

n mean_iconicity stdev_iconicity min_iconicity

1768 NA NA NA

Summarizing asl_signs
Let’s summarize the iconicity variable,
which is a score on a Likert scale of 1-7
(already summarized across
respondents).

asl_signs %>% 1
 summarise(2
 n = n(),3
 mean_iconicity = mean(iconicity, na.rm = TRUE4
 stdev_iconicity = sd(iconicity, na.rm = T),5
 min_iconicity = min(iconicity, na.rm = T),6
 max_iconicity = max(iconicity, na.rm = T)7
) %>% 8
 kable()9

This data isn’t very interesting unless
we have a grouping factor of interest.

n mean_iconicity stdev_iconicity min_iconicity

1768 2.948419 1.459429

Summarizing asl_signs: Group cases

We use group_by() to group a
dataframe using a variable.

asl_signs %>% 1
 group_by(lexical_class) %>% 2
 summarise(3
 n = n(),4
 mean_iconicity = mean(iconicity, na.rm = TRUE5
 stdev_iconicity = sd(iconicity, na.rm = T),6
 min_iconicity = min(iconicity, na.rm = T),7
 max_iconicity = max(iconicity, na.rm = T)8
) %>% 9
 kable()10

lexical_class n mean_iconicity stdev_iconicity

Adjective 274 2.554081 1.132531

Noun 912 2.748597 1.446377

Verb 582 3.449101 1.486408

Summarizing asl_signs: Group cases

We can group by different variables.

iconicity_type n mean_iconicity stdev_iconicity

Arbitrary 1415 2.344436 0.8130150

Both 96 5.097688 0.7912732

Pantomimic 145 5.698214 0.8233688

Perceptual 112 5.142523 0.7877890

asl_signs %>% 1
 group_by(iconicity_type) %>% 2
 summarise(3
 n = n(),4
 mean_iconicity = mean(iconicity, na.rm = TRUE5
 stdev_iconicity = sd(iconicity, na.rm = T),6
 min_iconicity = min(iconicity, na.rm = T),7
 max_iconicity = max(iconicity, na.rm = T)8
) %>% 9
 kable()10

Summarizing asl_signs: Group cases

We can even group by two variables at
once.

lexical_class iconicity_type n mean_iconicity

Adjective Arbitrary 245 2.261521

Adjective Both 13 4.848923

Adjective Pantomimic 8 5.157000

Adjective Perceptual 8 5.145125

Noun Arbitrary 752 2.198046

Noun Both 51 4.992882

Noun Pantomimic 62 5.793323

Noun Perceptual 47 5.047106

Verb Arbitrary 418 2.657444

Verb Both 32 5.365781

Verb Pantomimic 75 5.677320

Verb Perceptual 57 5.222232

asl_signs %>% 1
 group_by(lexical_class, iconicity_type) %>% 2
 summarise(3
 n = n(),4
 mean_iconicity = mean(iconicity, na.rm = TRUE5
 stdev_iconicity = sd(iconicity, na.rm = T),6
 min_iconicity = min(iconicity, na.rm = T),7
 max_iconicity = max(iconicity, na.rm = T)8
) %>% 9
 kable()10

Summarizing asl_signs: Assign name

To save the summarized data as an
object, we assign it to a new object
with the name asl_signs_summ.

lexical_class iconicity_type n mean_iconicity

Adjective Arbitrary 245 2.261521

Adjective Both 13 4.848923

Adjective Pantomimic 8 5.157000

Adjective Perceptual 8 5.145125

Noun Arbitrary 752 2.198046

Noun Both 51 4.992882

Noun Pantomimic 62 5.793323

Noun Perceptual 47 5.047106

Verb Arbitrary 418 2.657444

Verb Both 32 5.365781

Verb Pantomimic 75 5.677320

Verb Perceptual 57 5.222232

asl_signs_summ <- asl_signs %>% 1
 group_by(lexical_class, iconicity_type) %>% 2
 summarise(3
 n = n(),4
 mean_iconicity = mean(iconicity, na.rm = TRUE5
 stdev_iconicity = sd(iconicity, na.rm = T),6
 min_iconicity = min(iconicity, na.rm = T),7
 max_iconicity = max(iconicity, na.rm = T)8
)9

10
kable(asl_signs_summ)11

Plotting Summarized Data

Raw vs. Summary geom_ Functions
remember that ggplots are made by:

1. specifying the dataset

2. specifying the aesthetic mappings

3. adding layers, especially geometric objects (geom_…) which display the data

Some geometric objects display the raw data and require you to summarize it
manually (geom_col, geom_line)

Some geometric objects summarize the data for you (geom_violin,
geom_histogram)

Other special cases:

geom_point() displays the raw data

geom_bar() displays the count of categorical data

Plotting with Raw geom_ Functions
Plotting summarized data with raw geoms is simple if you’ve made a summary
dataset

You just make a ggplot like we have been doing with raw data, but give it the
summary dataset

library(ggplot2)1
asl_signs_summ %>% 2
 filter(iconicity_type != "Both") %>% 3
 ggplot(aes(x = lexical_class, y = mean_iconicity, fill = iconicity_type)) +4
 geom_col(position="dodge") + # position = "dodge" gives me clustered barplots5
 labs(x = "Lexical Class", y = "Mean Iconicity", fill = "Iconicity Type") +6
 theme_minimal()7

Plotting with Summary geom_ Functions
Plotting summarized data with summary geoms is even simpler - make a
ggplot with the raw dataset!

The geom object summarizes the data for you. This is usually the case for geom
objects that show distribution.

asl_signs %>% 1
 filter(iconicity_type != "Both") %>% 2
 ggplot(aes(x = lexical_class, y = iconicity, fill = iconicity_type)) +3
 geom_boxplot() +4
 labs(x = "Lexical Class", y = "Mean Iconicity", fill = "Iconicity Type") +5
 theme_minimal()6

Plotting with Summary geom_ Functions
Plotting summarized data with summary geoms is even simpler - make a
ggplot with the raw dataset!

The geom object summarizes the data for you. This is usually the case for geom
objects that show distribution.

asl_signs %>% 1
 filter(iconicity_type != "Both") %>% 2
 ggplot(aes(x = lexical_class, y = iconicity, fill = iconicity_type)) +3
 geom_violin() +4
 labs(x = "Lexical Class", y = "Mean Iconicity", fill = "Iconicity Type") +5
 theme_minimal()6

A note about viz…
ggplot is not the only package that can create visualizations!

for example, I created the correlations plot I showed you in viz with a package corrplot::

Impute missing values into correlations data1
library(mice) # For imputing missing values2
filter <- stats::filter # fixes masked function3
md.pattern(corrs_df)4
corr_imputation <- mice(corrs_df, m=5, maxit =5
complete_corrs_df <- complete(corr_imputation, 6

7
Calculate correlations8
correlations <- cor(complete_corrs_df, method =9
correlations_sig <- cor.mtest(correlations, conf_level =10

11
Correlation plot12
corrplot.mixed(correlations, 13
 tl.pos = 'lt', 14
 diag = 'u', 15
 tl.col = "black", 16
 p.mat = correlations_sig$p, 17
 sig_level = 0.50)18

Statistical Testing

Statistical Tests & Models in R

these functions do not work with pipe (%>%) because the first argument is not the dataset!

In the R ecosystem:

Statistical tests are functions, usually in specialized packages

They create objects, which are usually lists of lists of lists.

You cannot view these objects directly; instead, you use other functions which
look inside these objects and give you the output you like to see

These functions are usually called summary() or similar

my_anova <- aov(formula,1
 data = my_data)2
summary(my_anova)3

Common Statistical Tests
1. T-Tests and ANOVAs (Comparing Means):

t.test(): Conducts a Student’s t-test (two-samples and paired), which compares the means
of two groups.

aov(): Conducts a one-way or multi-way ANOVA, used to compare the means of two or more
groups.

2. Regression and Correlation:

lm() fits linear regression models; glm() fts generalized linear models.

cor.test(): Tests for correlation between two variables.

lmer() and glmer() (from the lme4 package): Fit linear mixed-effects models, which are
commonly used in linguistic research to account for random effects such as participant and
item variability.

3. Chi-Square Test:

chisq.test(): Conducts a chi-square test of independence, used to examine the
relationship between two categorical variables.

4. Factor Analysis:

factanal(): Performs a factor analysis, used in psychological research to identify underlying
latent variables.

Running Statistical Tests in Functions
Statistical tests in R are another step
where redundancy can be an issue

You may have to run the same test,
with the same settings, multiple times

This is risky in point-and-click
programs and better, but annoying, in
R

You can use functions to streamline
your testing scripts!

Function to conduct an ANOVA within FLAD or FLAPPY and create a summarized df1
single_study_anova <- function(studyname, effect, component) {2
 if(effect == "presence") {3
 outputdf <- component %>% 4
 filter(flankers != "S" & study == studyname) 5
 do(tidy(aov(value ~ group * flankers * ant 6
 mutate(sig = case_when(7
 p.value < .001 ~ "***",8
 p.value < .05 ~ "**",9
 p.value < .1 ~ "*"10
)) %>% 11
 filter(term != "Residuals")12
 return(outputdf)13
 } else if (effect == "identity") {14
 outputdf <- component %>% 15
 filter(flankers != "N" & study == studyname) 16
 do(tidy(aov(value ~ group * flankers * ant 17
 mutate(sig = case_when(18
 p.value < .001 ~ "***",19
 p.value < .05 ~ "**",20
 p.value < .1 ~ "*"21
)) %>% 22
 filter(term != "Residuals")23
 return(outputdf)24
 } else {25

Running a Paired T-Test
If we wanted to compare performance on test1 and times 1 and 2 (to see if
scores change) from the tidy climate data we created yesterday, then we should
run a “paired” t-test that takes into account the fact that the scores at time 1 and
time 2 were obtained from the same individuals:

tidy_lang_data_complex <- readRDS("../../data/tidy_lang_data_complex.rds")1
ttest_test1 <- t.test(test1 ~ time, data = tidy_lang_data_complex, paired = TRUE)2
ttest_test13

 Paired t-test

data: test1 by time
t = -3.9739, df = 34, p-value = 0.000349
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 -2.0295925 -0.6561218
sample estimates:
mean difference
 -1.342857

Reporting Data

R Markdown
Researchers commonly use R Markdown or R Notebook to write reports

Because the data and plots in these reports are from code, they will
automatically update with new data every time you knit or render them

No more rewriting results tables or remaking plots every time!

(You still have to rewrite your discussion and conclusions … for now)

Creating Tables
Packages exist for creating publication-ready tables

I’ve been using kable() throughout this presentation to make pretty tables.

There is also a package called kableExtra. From the author Zao Hu:

The goal of kableExtra is to help you build common complex tables and manipulate table
styles. It imports the pipe %>% symbol from magrittr and verbalize all the functions, so
basically you can add “layers” to a kable output in a way that is similar
with ggplot2 and plotly.

How to Write Good Code

Commenting
Commenting is your inline documentation of your code and analysis

Especially as a beginning coder, there is no such thing as too little commenting

Comments should:

1. explain what your code is doing

2. explain decisions you made and why

3. not repeat the code, but clarify & contextualize it

Naming Variables and Objects
How you name variables and objects can make life much easier for you.

Use long & descriptive variable or object names if you have to.

Text is cheap, brain capacity is not.

Which dataframe name is clearer?

df31
average_EEG_response_times2

Variables and objects should never have spaces or hyphens; use underscores
instead.

Names with spaces or hyphens must be surrounded by ` ` every time you
call them, which is super annoying.

Coding Style
Don’t use run-on code lines; most functions should start on a new line.

Use blank lines often to separate code blocks! You can’t have too many blank
lines.

Add spaces around operators: + - == < != <- etc.

Add spaces after comments like in English.

new_df <- mutate(df,1
 new_name = old_name,2
 new_name2 = old_name2,3
 new_name3 = old_name3)4
newer_df <- filter(new_df,5
 group = "deaf")6

Debugging

Other tips for coding in R
Delete old objects you no longer need with rm(). This helps keep your
environment clean.

If you need to quote something, highlight it and press " or '. This also works
with (.

Use sectioning comments (# Section title -----) which allow you to
“minimize” sections.

Now What?
Your only real OYOLab!

If you’ve imported your data into R, look at your data in R

Figure out what you want to do with it.

Write out some goals you have for your data.

Write pseudocode to figure out your goals.

Try writing code to work with your data!

Try writing visualizations to explore the data.

If you don’t have data, play around with ours!

Try select(), filter(), mutate()

Can you make some simple visualizations to explore the data?

